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Abstract—In this paper, we study an encryption scheme based on group algebra G over the
boolean ring R. The key idea of the proposal is that for a given commutative ring, we can define
different functions over Zy and use them as the underlying structure. Using this group algebra
RG, we are giving a criterion to encrypt the message and to retrieve it using the RSA Algorithm.
For the decryption algorithm to work, without any loss of data, the invertibility of the latin
square over R is the necessary condition.

Index Terms— Cryptographic bijective functions; One-way functions; Boolean Rings; Trace;
Automorphism; Group Algebra; Partition of a set.

|. INTRODUCTION

In 1976, Whitefield Diffie and Martin Hellman published the first practical public key cryptosystem for secure
data transmission [10]. The Diffie-Hellman Algorithm was based on the discrete log problem. Since then, many
public key cryptography algorithms have been created. The RSA scheme [9] discovered in 1978 by Ron Rivest,
A. Shamir and Adleman was based on the factorization problem of the modulus, factorising of modN is an
impractical task if the integer N is sufficiently large, where N is the product of two distinct large primes. Since
then, many developments have been made in the field of cryptography. Elliptic Curves based Cryptography has
an advantage over the nonelliptic curve cryptography with the smaller key sizes [4][5]. Elliptic Curve
cryptography is based on the algebraic structure of elliptic curves over finite fields.

Here, we are using Special finite non-abelian groups in order to make the bijective functions more efficient and
suitable for encryption and decryption purpose. We are introducing the concept strongly co - prime integers for
constructing more trap door functions. In this paper , we study some important properties of strongly co-prime
integers and their effective use in public key cryptography. In recent past many works have been done to
improve the cryptosystems using the group algebra over commutative and non-commutative rings.

It is necessary for a good cryptosystem to be practically impossible for the attacker to break [2]. A good
cryptosystem would comparatively take more time while the attacker is trying to break into it. This can either be
achieved by making a moderately longer key or by creating a more advance algorithm that would make the
entire cryptosystem reluctant to any damage.

Here, in this paper, we present some new techniques to encrypt and decrypt the messages. Some basic concepts
of group algebra and, linear algebra have been used and applied to make a new algorithm. The RSA Algorithm
[8] has been used as the basis of the cryptosystem whose definition we would like to record:
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Encryption: Given the public key (n,e) = k,,,, and the plaintext x, the encryption function is y = ekpub(x) =

x°modn, where x,y € Z,.
Decryption: Given the private key d = k,, and the ciphertext y, the decryption function is x = dk,,(y) =

y?modn, where x,y € Z,.
Here, ed = 1(mod(p —1)(q — 1)) andn = pq
Theorem 1.1 (RSA) The mapping f:Z, — Z, where n is the product of k distinct odd primes, f(x) =

x°(Mod n) such that gcd (e, (p, — 1)(p, —1) .. (p, — 1)) =1 is bijective. Here, ed =1 ((Mod ((p, -

D, -1 ..(px — 1))) andn =p; - p, ... px
For a function ' f', if there exist some secret information ' y', such that if f(x) and y are known, then x can be
computed easily. Such a function is known as the trapdoor function. A trapdoor function is a functionthat is easy
to compute in one direction, yet difficult to compute in the opposite direction (finding its inverse) without special
information, called the "trapdoor”. A one-way function is a function that is easy to compute on every input, but
hard to invert given the image of a random input. In this direction, many researchers started constructing trap
door permutation polynomial over finite fields. Now we would like to recall an interesting result due to R.A.
Mollin and C. Small. [8]
Theorem 1.2: Let GF(q) be a given finite field with q elements having characteristic different from '3'.
Then f(x) = ax® + bx? + cx + d(a # 0) permutes GF(q) if and only if

b? = 3ac and g = 2(Mod 3)
Now, let us use this theorem for constructing a permutation polynomial over Z,, for large odd prime (p # 3).
Using the quadratic reciprocity law, we can deduce the following theorem
Choose an odd prime p such that p = 11(Mod 12)
Then choose a, c € set of quadratic residues modp or a,c € set of quadratic non-residues modp Then the
polynomial f(x) = ax® + bx* + cx + d € Z,[x] permutes Z,.
If we choose a prime p such that p = 5(Mod 12),
Then we have to select a € set of quadratic residues modp but ¢ € set of quadratic non-residues modp
or if a € set of quadratic non-residues modp and ¢ € set of quadratic residues modp
Then the polynomial f(x) = ax® + bx* + cx + d € Z,[x] permutes Z,.
Let us now observe, how we can use some elementary number theory to construct some simple encryption and
decryption schemes.
For more works on Analytic Number theory, the reader may refer to [1].

A. Some examples to construct bijective functions

In this section, we give some more methods for the secure encryption of data using different fields like vectors,
rings, matrices etc. This can be understood better with help of the following theorems and examples.

Example 1.1: Select Four Secret distinct positive integers a, b, P,Q where P and Q are very large odd primes
such that ab > PQ

Define M = ab — PQ

Sete = (PQ)’M +aandd = (PQ)M + b

Consider ed — PQ = M((PQ)3M + a(PQ) + b(PQ)? + 1)

Define N = (PQ)3M + a(PQ) + b(PQ)? +1

Then, we observe: gcd (e, N) =gcd (d,N) =1

Define Zy ={0,1,2,...,N — 1}

The map f: Z$? - 72 defined by £ (x, y) = (ex (Mod N), dy(Mod N)) is bijective.

Example 1.2: Let us now extend the above example further

Take four distinct positive integers a, b, ¢, P where P is an odd prime. such that abc > P.

Define M = abc — P

Sete =P3M+a;d =P?M+b,and f = PM +c.

Now, construct edf — P = M(P®M? + aP3*M + bP*M + abP + P5Mc + acP? + bcP3 + 1)

Then, we observe: gcd (e, N) = gcd (d,N) = gcd (f,N) = 1 The map ¢: Z,(Vg) - Z,(Vg) defined by ¢(x,y,2) =
(ex (Mod N),dy(Mod N), fz(Mod N)) is bijective.

Example 1.3: Let us take four distinct positive integers a, b, c, d greater than or equal to 2 .

Define N = (abcd (a + 1)(b + 1)(c +1)(d +1)) +1



Here, we observe that gcd (a, N) = gcd (b,N) = gcd (c,N) =gcd (d,N) =1
and,gcd(a+1,N)=ged(b+1,N)=gcd(c+1,N)=gcd(d+1,N) =1

also, gcd (a(a +1)2,N) =1

Define Zy = {0,1,2,... N — 1}(Mod N) a ring of integers with respect to +, and x,.

Now, let us construct a bijective function f Z,(\f) - Z,(Vg)

fGy,2) = (u,v,w)

whereu = a?x —ay + k
v=QRa+1x+ay+I

w=az+m,

Here, k,I,m € Z.

Similarly, ' a ' can be replaced by 'b’, ‘¢’ and 'd’.

a,b,c,d € Zy,
Example 1.4: Define F = {? d] | (a,b) = (c, d) = 1
(a, ) = (b d)=1
Proposition 1.1: Suppose c [
aa bp . [ ﬁ] b
Then [cy ds € Fifand only if ] EF.

Proof: (aa, bB) = (a,b) % (a,B) % ((a b)’ (aﬁ) ((ab) (aﬁ))

Similarly, (aa, cy) = (a, ¢) x (@, y) ¥ ((a“c) (ayy)) x ((afc) (a“y))
Therefore, (aa,bB) = (a,B) - (b, )

Similarly, (cy,dé) = (c,6) - (d,y)

(bB,ds) = (b,5) - (B.d)

(aa,cy) = (a,v) - (c, a)

Proposition 1.2: Suppose c ] [

Define N = aadd + cybf

N; =ad + By

N, =ad + bc

aa bﬁ]
Assume [cy ds EF

Define f Z,(Vg) - Z,(Vg)
f(x,y,2) = (a' + (ax + d&)x + dSy(Mod N), B’ + cyx + cyy(Mod N),y’ + (b?B%cy)z(Mod N))
.2(3) 2(3)
hiLy! = Ly
fi(x,y,2) = (a" + (ay + d)x + dy(Mod N,),yx +yy + " (Mod N,),y" + (8%y)z(Mod N;))
.2(3) 2(3)
faily; = Ly,
f,(x,y,2) = (" + (ac + 8)x + §y(Mod N,), B + cx + cy(Mod N,),y"" + (b*c)z(Mod N,))
Then, f is bijective if and only if f; and f, are bijective. Example 1.5: Let p, q, r be three given (distinct) odd
primes
Assume r% + g = 0(Mod p)
Consider the following 2 < 2 matrix " A "
_ T 1% + qr
" pg +pr? g% +pr+qr?

Per (A) =rq® + pr? + qr® + p?q +p*r? + pq’r + pqr’

= (q + qQr® + (p +p*)r* + (pq* + q*)r + p*q

Define N: = Per (4)

=g + @’ + (p +p*)r* + (pq* + ¢*)r + p?q,
Now, we can show that
ged (r(pg +pr?),N) =1
ged ((p + qr)(q® +pr+qr?),N) =1
ged (r(p +qr),N) =1



ged ((pg + pr?)(q® + pr +qr?),N) =1
Define a bijective map f Z,(Vg) - Z,(Vg) as follows:
flx,y,2) =(la+ (qr? + (p + V)r + q¢*)x + (¢ + pr + qr?)yl(Mod N),
16+ (g + pr?)(x + y)I(Mod N), [y + (p + qr)*(pq + pr?)z](Mod N))
qgre+(p+Dr+q* q +pr+qr] 5
Det = + Mod N
g+ pr? pq + pr2 [(pg +pr*)()I( )
So, ged ([(pg + pr®)(M] N) =1
Therefore " f " is bijective.
Proposition 1.3. Let a be the non-zero vector in R3. Then T,(x) = (a % x) — a — x, and
S,(x) = xxa—a— x,ax x,x x a denotes vector cross product in R3 is bijective from R3 to R3.
If we consider d = (a,, a,, as) € Z3 over a finite field with p where p is an odd-prime. Then the map
T,(x) is bijective if and only if a? + a3 + a2 = —1(modp).
Theorem 1.3: Let d@, b be any non-zero vectors and y is any vector in R3.
Then T g5 (%) = (b 9)d — (b - @)y + (¥ x d) + (J x b) +j + (@ x b) +d— b is a bijective map from R®
onto R3.
Proof:
Let d be a given non-zero vector in R3.
Define: Tz(X) =dxX—d— X%
Sz(X)=%xd—d—%x
T;, Sz both are bijective maps from R3 onto itself.
Select d, b are given non-zero vectors in R3.
Now, let us compute Sj o Tz: R® —» R3
SzoTz; = Sz(Ta(x))
=Sz(@*xx—a—x)
=(@*xX¥-d—X)xb—(@xX—d—%)—b
=@x¥)*xb—(@xb)—@Exb)—(@xX)+d+%—b
=@x¥)*xb+(Bxa)+(Bxx)+(Exd)+da+x%—b
=@ b)i— (% Ba+@xa)+(Bx)+x+(Bxa)+d—>b
Now, we use the above-mentioned theorems to prove some corollaries. Corollary 1.1: Let @ = (a;,a,,a3) €
Z,(Vg) form a commutative ring with respect to +, and x,.
Ty Z,(Vg) - Z,(Vg) defined by Tz(x) = d x ¥ — a — X for all x € Z. Then T; is a bijective function if and only if
(a? + a3 +a2) = r' — 1(modN), where gcd (r',N) = 1.

I1. PROOF
Suppose T, (%) = T, () forall x,y € Zy. Then
AxX—d—X=axy—d—7
(@ ((®) -0 =% - )
i j k

a, a, as
X1 —=V1 X2—Y2 X3— Y3
(az(x3 —y3) —az(x; — y5), az(xy — 1) —a;(x3 — y3), a;(x, — y,) — ay(xy — }’1))
= (X1 — Y1, %2 — Y2, X3 — ¥3)
—(x; —y1) —as(x; —y;) +a,(x3 —y3) =0
as(x; —y1) — (e —y2) +a;(x3 —y3) =0
—a,(x; —y1) +a;(x; —y,) — (x5 —y3) =0

-1 —a; a, X1 =1 0
as -1 —a, X =Y2|=10
_az al _1 x3 _y3 O

In order to get a trivial solution, we must have

= (X3 —Y1.X3 — V2. X3 — ¥3)




-1 —-a; a,
det ( a; -1 —a1> e U(Zy)
-a, a -1

Let us consider
thengcd (Imod N,N) =1

-1 —-a; a,
l = a3 _1 _a1
-a, a -1

Now, let us compute ImodN
(—1(1 +a}) + az(—a; — a,a,) + ay(a,a; — az))mOdN
ged (—(1 + a? + a2 + a2)modN,N) =1
—(1+a? + a2 +a2) = r(modN), where gcd (r,N) =1
(1 +a? + a2 +a2) = —r(modN)
(a? + a2 +a%) = N —r — 1(modN)
(a? + a3 +a?) =r’' — 1(modN), where gcd (', N) = 1
Ty Z,(VB) - Z,(VB) is bijective if and only if (a? + a2 + a3) = r' — 1(modN), where gcd (', N) = 1

I1l. COROLLARY1. 2

Let, @b € 8 with @ = (a,,ay, a3),b = (by, by, bs).
(a? + a2 +a2) =r' — 1(modN)
(b? + b2 + b2) = s’ — 1(modN)
where ged (r',N) = gcd (s’,N) = 1.
T(apy®) = (b-B)d — (b- @)% + (¥ x d) + (£ x b) + & + (@ x b) + d — b is bijective from Z{’ to Z

IV. ENCRYPTION AND DECRYPTION OVER FINITE BOOLEAN RINGS

A. Boolean Rings

Now we shall see how to reconstruct the original message text using boolean rings over group algebras. In this
context, let us review the definition of Boolean Rings [3].
Let X be any given finite set (non-empty).Consider P (X) = { set of ALL subsets of }
Define @ and - on P(X) as follows:
A®B=(A-B)U(B-A)
A-B=AnNB,
where 4,B € P(X)

X X

A B A B

Figure 1 : Boolean Ring

Thisring is:

a) Commutative



ADPB=B@A

A-B=B-A, where A, B € P(X)

b) Associative

ADBHCO)=ADPB)HC
A-(B-C)=(A"B)-C,where A,B,C € P(X)

c) Distributive

ADBB) C=A-0O)B(B-0)
(A-BY®C=(ADC) (B C),where 4,B,C € P(X)
The empty set (¢) is the zero of the ring.

The finite set X is the one of the ring.

Hence, (P(X),D,, ¢, X) forms a Boolean Ring.
_[A B _[E F
LetU—[C ol —[G Y

then the matrix multiplication is defined as follows:
_[A B [E F|_[AE®BG AF ® BH — .
wo=[¢ ol yl=lce@pe cr@on) AB=4B
While decrypting the message, the invertibility of the latin square, formed over the boolean ring R, is a necessary
condition. That latin square can be formed using various techniques mentioned below.

V. MAIN RESULT: ENCRYPTION SCHEMES OVER SQUARE MATRICES

In this section we give an algorithm to encrypt as well as decrypt the data using square matrices. Here, the square
matrices are constructed with its elements from the power set of the boolean set X. Let M = [ l be the message

that we have to encrypt. Where ¥;,Y,, ¥; € X

To encrypt the message, we need a key.
X@AEPBF ADBG B

LetX = E & CF X @ CG | bethe Encryption key, Det (X) = X

F G X

where, A,B,C,E,F,G € P(X)

DefineEnc (M) =X - M

(X DAEDBF ADBG B

= E @ CF X 69 CG C

F

v, @ BFY, ® AY, ea BGY, ea BY, [ 1‘

l— Yz (say)

= |EY, ® CFY, ® Y, ® CGY, &® CY,
FY,®GY, DY,

Here,
Y/ =Y, @ BFY, @ AY, @ BGY, @ BY;
Y, =EY, D CFY, DY, D CGY, DCY,



Y, =FY, ®GY, DY,
To decrypt this message,

D, (M) =K1
1[X A ACOD B
=—|E X @ AE C & CAE & BE
XF G D GAE DAF X D BF G CG D EBG & CGAE
X A ACODB
=|E X @D AE C & CAE & BE [~ X is the one in the ring P(X) |
F GOHGAEDAF XD BF D CG D EBG & CGAE

Here, as we have mentioned, that in a Boolean Ring, the one (1) of the ring is the finite set X. In order to
maintain the invertibility of the matrix, it is important that we construct the matrices with their determinant = X.
This determinant being equal to the one of the finite ring ensures the invertibility and hence the decryption is
possible without the loss of data.

Some of the methods to construct such matrices have been discussed below.

A. To Construct a square matrix with determinant = X using triangular matrices
Let X be any given finite set (non-empty). Consider P(X) = { set of ALL subsets of X}
Define @ and - on P(X) as follows:
Define two square matrices A and u
A®B=(A-B)U(B-A)=B®A
A-B=ANB=B-A, where A, B € P(X)

X A B X ¢ ¢
u=|9¢ X C|;v=|E X ¢|whered B,C EF GePX)
» ¢ X F G X

X®AE®BF ¢DAXDBGC ¢ ®BX
uv=|¢pDEDBCF ¢DXDBCGC dDPDC
» D XF DG X
X®AE@®BF A@®BG B
E®CF X®C ¢
F G X
det (u-v) = [(X ® AE @ BF)(X & CG @ CG)] @ [(A ® BG)(E & CF @ CF)] ® [B(EG & CFG @ F @ CGF)]
=X @ AE @ BF ® AE ® BGE @® BEG @ BF
=X

- (K)

VI. EXAMPLE 2.1

Assume X = {1,2,3,4,5} and P(X) be the power set of X
here, det (u-v) =X

X {12y {23} X ¢ ¢
u=lp x {123}:v=|{13} X ¢
¢ b X (1,2} {34} X

{345} {123} {23}
u-v=|{23} {1245} {123}
{1,2} {34} X
Similarly, using different finite non-empty sets " X " and taking different elements from their power set, we can
obtain infinite number of square matrices of any order.

X A B C
. . . ¢ X D E
Similarly, we can create a 4-square matrix by multiplying U = b & X F and
» ¢ ¢ X
X ¢ ¢ ¢
_|G X ¢ | T — Coe
v=lp |y p in order to get a 4-sqaure matrix D = U - v whose determinant = X.
] K L X



X®ACHOBHOC] ADBIDCK BOCL C
_ _ G @D DHDEJ X®DIGEK D@EL E
D=u-v= He F| 1 ® FK X®FL F where 4,B,C,D,E,F,G,H,1,],K,L €
] K L X
PX)

A. To construct a square matrix with determinant = X using square tridiagonal matrices
Let X be any given finite set (non-empty). Consider P(X) = { set of ALL subsets of }

X A ¢ X C ¢
LetU=|B X Alandv =|D X (|, we haveDet(U)=Det(V)=X.
¢ B X ¢ D X
Here, A,B,C,D € P(X)
XD AD CPA CA
uv=(B@®D XPBCHAD CPHA | Det(u-v)=Det(u)-Det(v)=X-X=X
BD B®D X @ BC

VII. EXAMPLE 2.2
Assume X = {1,2,3,4,5} and P(X) be the power set of X.

Det(u-v) =X
X {2,3} ¢ {345} {123} {23}
u=|{1,23} X {23};v=| {23} {1245} {123}
¢ {123} X {1,2} {34} X

{245} {1,2,3} ¢
u-v= [0) {4,5} {1,2,3}
{13} {1234} {45}

A. To construct a square matrix with determinant = X using partitions of a set

Let" X " be a non-empty finite set,
X = {a11 a21 a31 ey an}
Define A;,4,, A5, ..., A,, asthe partitions of the set X.
Create a matrix " U" using the A;s as latin square.
n

X:U A AN A= Vi #J.
i=1
Det(u) = A, DA, DA, B ..DA, =X

VIIl. EXAMPLE 2.3:
LetX ={a,b,c,d,e f,g}

A, ={a,c,d}
A, ={b,e}
A; ={f}

A, ={g}

Here, A;,A,, A3, A, are partitions of X.
Al AZ A3 A4

. _ A, Ay A, A
Define U = A, A, A, A,
A, A; A, A
Determinant = Zaesn (_1)ga10(1) ’ aza(z) " A35(3) ++ Ana(n)
Hence,Det(U) = A, @A, PA; DA, =X

IX. PuBLIC KEY CRYPTOGRAPHY USING PERMANENT AND TRACE OF MATRICES

In a square matrix, the permanent of a matrix is defined as follows:



Per (U) = Z A15(1) * %20(2) * B30 (3) -+ Ana(n)

TESH

A. Encryption Scheme using the Permanent of a Matrix

1. Consider the following 3 %< 3 matrix
p p* s
A=1q q* 73| wherep,q,r,s areall distinct odd primes with
r pt r?

p® +1r #0(Mod q)
q® +p*r +pq +pr? £ 0(Mod s)

X.STEP 1:

Avrbitrary select p, r distinct odd primes.

STEP 2:

Choose an odd prime " ¢ " which is distinct from p, r such that
STEP 3:

p® +7r % 0(Mod q)

Select an odd prime "'s" which is distinct from p, q, r such that
1. Here,

q® + p*r +pq + pr? £ 0(Mod s)
Per (4) = pq®r? +p°r® + p*qr? + p’r* + p*qs + ¢°rs
gcd (pgr,Per (A)) =1
ged (p*q°p* = p°q®,Per (4)) =1
ged (5s,Per (4)) = 1 3. In fact

ged nxj,Per(A) =1

XjES

where S = {p, p%,p*,q.q3,r,72,73,s}
2. Consider the Diagonal Matrix of order k x k (where k is very large)
Dy = Diag (v1, Y2, Y3, -, ¥i) Where y; = [1 es(x;) forl < i <k
D, is private.
3. Take P € GL,(Z) any k x k matrix with integral entries and det (P) = =1
P is private.
4, Construct public key ¢ = P~1D, P
5. Define a public key N = Per (4), where A is the private 3 < 3 matrix.
6. Suppose the given message

my

M=|"2  withm ez,
My Ly

XI1. ENCRYPTION

E(M) =cCM(Mod N)
my

™2 |(Mod N)

my
Since, gecd (det €(Mod N),N) = 1, we can compute C~*(Mod N) easily using the private keys P, D,,. Since "
k" is very large, computing €~ is very difficult. Hence, the method is secure.
10. Decryption = €~1(CM)(Mod N)



A. Encryption Scheme using the Trace of a Matrix

Take a matrix M, (Zy)
Let " N’ be a given fixed large positive integer.

X
7 = i | x,y,2,w € Ly
1%
my
Suppose message vector, m = | 2| € 7
pp ge vector, m = |, *| € Zy
My

Now, define M, =

M, = m; m, ms; my
m, m; m, my
my m, m; my

_m; my my my

M; = m; m, m; m,
m, mg m, m
my m, m; my

My my my; my

M, = m, m;y my m;

M3 My My My

Define A = [a;;], B = [by;], € = [c;;].D = [d;;] € M4 (Zy
Define f ZI(:) - Z,(:)
m trace AM,
f m; _ | trace BM,
m, trace CM,
trace DM,
Then f is bijective if and only if
A1tz T a3z + Ay Ay T A1 A3 T Qg3 A3y T Ay T Q13 ¥ Ay Ay T A3p T Ay3 Ay
biz +byy + b3y +byy  biy+by3+ b3yt by byg+ byt b3zt by  bip+ by + by, +bys
€11 T Cpp FC33 T Cyp C1p ¥ Cp1 T 034 Cy3 Ci3 0y T C33 T Cyp Cig T Co3 F 035+ Cyy
diy +dyy +dsp; +dyg dyp Hdyz +dyy +dyy diztdy tdyytdy dyg tdy tdigtay,
is invertible over M, (Z,).
det (B) = a(modN)
thenged (a,N) = 1

B =

m, trace AM,
m,| | _ | trace BM,
Now, Enc my| |~ | trace CM,
m, trace DM,

XI1. ENCRYPTION USING COMMUTATIVE RING WITH UNITY

Given a multiplicative group G, and a commutative ring R with identity, the set RG consisting of all the finite

formal sums Y gec a(g)g with addition defined coefficient-wise and multiplication induced by the
a(g)ER

multiplication in G together with distributivity is an algebra over R called the group algebra of the group G over

the commutative ring R [3].
Thus for a =Y ;cqa(g)g € RG, B = Y e B(R)h RG

10



a+p=) (alg)+Ba)g

gEG
=) (D ap) |g
geG \xy=g

The element 1ze;, where 1, is the identity element of the ring R and e, is the identity element of G, is the
identity element of the group algebra RG.
Observe that the map g — 1zg is a 1 — 1 group homomorphism from G into the group of units of RG, and the
map 1 = Aeg isa 1l — 1 ring homomorphism R — RG. We can thus identify both G and R with their respective
images in RG under the above maps. In particular, we then have 1 = e; = 1ze, and this element is the identity
element of RG which we will denote by 1.
For understanding more basic properties about Group Algebra the reader can refer [4]. Let " N " be a given fixed
large positive integer. Define R = (Z,,, +,,,%,,; 1,0) be the given commutative ring with unity. (Ring of integers
modN ), where Z,, = {0,1,2,---, N — 1}.
Let f(x,y)=a+bx+cy+dxy be the given polynomial in the variables x and y over
(Zy,+5n,%y;1,0);a,b,c,d € Zy.
Choose a,, by, c;,d, in Zy such that

gcd(a,,N) =gcd (a, + by;,N) =gcd (a, +¢;,N) =gcd (a; +b; +¢; +d;,N) =1
Define g(x,y) = a; + byx + c;y + d xy
Here, we are considering the following semi associative group on {x,y, xy}.

x y xy

X x xy | xy

y Xy |y Xy

Xy | Xy | Xy | XY

Define E(f (x,y)) = f(x,y) - g(x,y)

= (a+bx+cy+dxy)-(a, + byx+ c;y +dyxy)
=aa, +a;bx+a,cy+a,dxy+ab;x+ bb,x+ cbh,xy+ b,dxy+ ac,y + bc,xy +cc,y
+c,dxy + ad,xy + bd,xy + cd,xy + dd,;xy

= aa, + [ab, + (a; + b;)b]x + [ac, + (a; +¢;)cly

Comparing the coefficients of x and y

+[ad, + (c; +d,)b + (b; +d;)c + (a, + by + ¢, +dy)d]xy

aa; =a - (1)

ab; +(a; +b))b=1b" - (2)

ac, +(a; +¢)c=c¢" > (3)

ad; + (¢; +d)b+ (by +dy)c+ (a; + by +¢; +dy)d =d' - (4)

a; 0 0 0
A= by ay+ by 0 0
C1 0 a1+C1 0
di ¢y +dy bi+dy ay+b +c;+dy

Det(A) = a;(ay + by)(a; +c;)(a; + by + ¢y +dy)
Here, gcd (Det (4),N) =1
Now, we can describe encryption of f(x,y) as
Enc (f(x,¥)) = f(x.¥) - g(x.y)
XI11. SOME ENCRYPTION SCHEMES USING NON-ABELIAN GROUPS
Now, we shall see few examples of interesting finite non-abelian groups G which are being used in Encryption &
Decryption.

11



Example 5.1: Let G be a given group. Let R be a given normal subgroup of G.

7. G and R are given to public

8. Select an endomorphism a¢ € End (G) such that ¢(R) = R and « induces identity on%
9. a € Aut (G) © a € Aut (R)

10. a is fixed point free automorphismiea(g) =g g=e

11. Action of @ on R is private (i.e) a(r) is private forall » € R

12. Choose amessager # e € R

For this message r € R, we can find a " g " € G such that a(g) = g - r Here for this r € R,we have one and
only g € G such that a(g) = g - r For, suppose g,, g, € G such that
a(g) =g, > Q)
a(gz) =g, r = (2)
~ g1'algy) = gz'a(gy)
= 9291 = a(g291")
> g.91  =e=>91=9,
13. For this message v € R, g is public and a3(g) is also public.
The action of a® on elements which are not in R is public.
The action of @ on G — R is public.
Nowa(g) =g r
14. Encryption:
a’(g) =a(g-r)=a(g)a(r)
=gr-a(r)
a®(g) =a(g) a(r)-a*(r)
= gra(r)a?(r)
h=a®(g)
h=gr a()a?(r)
15. Decryption:
g th-[a?@M)]  a@)] ™ =7
Here The action of @ on R is private.
Example 5.2: Let G be a finite group of very large order.

16. H be a given subgroup of G such that O(H) is also very large and H is given to public.
17. Let K be subset of G, which is not a subgroup of G such that K is private.

18. G=HUK

19. Choose amessagem € Hbutm ¢ K

20. For this m select a secret r such thatr € K butr ¢ H

21. Now the encryption of E(m) =r-m

22. Sincer*e¢ Hbutr ' e K
Decryption = r~1(rm)
=m
Example 5.3: Let P, Q, R, S be any given positive integers greater than or equal to "2".
23. Define N = PQRS + 1, then
g.c.d(P,N) =g.c.d(Q,N) =g.c.d(R,N) =g.c.d(S,N)=1
24, G ={(a,b,c,d,e) | ab,c,d,e€Zy}
Now in G, we define following binary operation:
25 (alr blr Clr dlr el) * (a21 b21 CZ! d21 eZ) = (xr yr zZ, W, l)

x =a; +a,(modN)
y = b, + b,(ModN)
where z = ¢; + ¢c,(ModN)
w =d; +d,(modN)
Il =a,b, +byc, +c,d, +e; +e,(ModN)
26. Now, this G is a non-abelian group of order N°.

In this group G, we can observe the following.

12



217. The mapping f: G — G, defined by f(g) = g€, where e € {P,Q,R,S} is a permutation on G. Now,
using the above examples, we can construct a finite non-abelian group G using finite commutative ring
with identity R. This finite group G can be further used for encryption and decryption of the messages.

Let R be a finite commutative ring with identity.

Define G = {(x;, x5, x3, X4, X5) | X1, X5, X3, %4, X5 € R}

Now in G, we define the following binary operation:

(o1, 22, X3, %4, X5) * (V1, Y2, V3, Y4, ¥5) = (21, 2, 23, 24, Z5)
where z; = x; +y,;

Z; =X+,

Z3 =X3t ;3

Zy = X4+ Y,

Zs = Y1X3 F YoXy F X5+ Y5

IG] = |RI°

The mapping f: G — G, defined by f(g) = g°, where g - c.d(e, |R|) = 1 is a permutation on G.

Similarly, we can construct another finite non-abelian group H using R.

Define H = {(xy, x5, X3, %4, x5) | X1, X5, X3,%4, X5 € R}

Now in H, we define the following binary operation:

where z; = x; +y,;
(1,22, X3, %4, %5) * (V1,Y2, Y3, Y4, ¥5) = (21, 23, 23, 24, Z5)
Z; =Xty
Z3 =X3+Y;3
Zy =Xy F Y,
Zs =YX ¥ YoXo ¥ Y3Xg + X5+ Y5
|H| = |R|®
The mapping ¢: H — H, defined by ¢ (h) = h¢, where g.c. d(e, |R|) = 1 is a permutation on H.

XIV. ENCRYPTION SCHEMES OVER GROUP ALGEBRA RG

Taking f(x,y,2) =a+ bx+cy+dz+exy+ fxz+ gyz+ hxyz € RG
wherea,b,c,d,e, f,g,h ER

G={1,xvy,2xy %2z xyz}

x? =y? =2z = (xy)* = (x2)* = (y2)* = (xyz)* =1

xy =yxandyz = zy and xz = zx

Then we can reconstruct f(x,y, z) from f(x,y,z) - g(x,y,z), where

gx,y,z) =a, +byx+cy+dz+exy+ fixz+ g,yz+ h,xyz if and only if
is invertible over R

[y by ¢ dy e fi g1 ]
by ag e fi ¢ di hy gy
¢ e a g1 by h dy f
d fi 91 a4 hy by ¢ e
ey ¢ by h o a g fi 4
h di by by g1 a e ¢
91 hh di o fi e a b
Lhy g1 i e di ¢ by al
In this case, we are taking R = (P(X),®,;1 =X,0 =¢)

where a,, by, ¢;,d;, €4, f1, g1, by € P(X) such that

a,, by, cq,dq €4, f1, 91, hy fOrms a partition of X

A=

a b, (&1 dy € fi g1 hy

b, a; € fi (&1 dy hy g1

(&1 € a; g1 b, hy dy fi
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dy fi g1 a; hy b, (&1 €

€ (&1 b, hy a g1 fi dy

fi dy hy b, g1 a € (&1

g1 hy dy (&1 fi € a b,

hy g1 fi € dy (&1 b, a;

Here, it is interesting to note that A is a Latin square.

Theorem 6.1: G = (1, x) x (1,y) x (1,z) x (1,w), where, x2 =y2 =z2 =w2 =1

Xy =YX, XZ = ZX,XW = WX, yZ = Zy, YW = WY, ZW = wz

i.eG=C, xC,*x(,x(C,=Direct Product

if 4 copies of cyclic groups of order "2".

Let (R, +,") be given commutative ring with unity 1 # 0.

Consider the group algebra R.

RG={a+bx+cy+dz+ew+ f(xy)+ g(xz) + h(xw) + i(yz) + j(yw) + k(zw) + l(xyz)
+m(xyw) + n(xzw) + o(yzw) + p(xyzw);a,b,c--0,p € R}

Let f(x,y,zw) =a+bx+cy+dz+ew+ f(xy) + g(xz) + h(xw) + i(yw) + k(zw) +
l(xyz) + m(xyw) + n(xzw) + o(yzw) + p(xyzw) € RG

Then we can reconstruct f(x,y, z,w) from f(x,y,z,w) - g(x,y, z,w), where
glx,y,zw)=a, +bx+cy+d,z+ew+ fixy+ g,xz+ hxw+ i,yz+ jiyw + k,;zw
If and only if

+lxyz + myxyw + n xzw + o, yzw + p; xyzw
PN RRRORR T,

(ap by o di oer fi g1 b L 1 ke Lo oM oy
by & fi ¢4+ M o d eg L o mony i i ke
a h o L j1 b L m d e 0 g1 b P
di g1 b a ky L4 by ny o 04 e fi p1 My
ee. hh j1 ki o m ng by 0o ¢ dy p1 fi G
i a b L m oa i j1 g1 h P d e 0
g1 do L b ng iy a ky fi P b o 0y e
hy e my n by j1 ki a pr i g1 01 ¢ dy
I L d ¢ 00 g1 fi P10 a4 ke ji by ng oMy
ji mi e o, ¢ h p fi ki a i ng by L
ki ke ki e dp P b9 1 i o4 my L by
L 4 g1 A pB 44 ¢ o-hm.. . .m. o ki

is invertible over R

Corollary 6.1: Let R=(P(X),+51=X0={}) be a Booltan Ring with

a,, by ¢y, dq e, fiy 91 i a0 ko LMy g, 04, py TOrms a partition of X.
Then we can reconstruct f(x,y, z,w) from f(x,y,z,w) - g(x,y,z,w)

XV. EXAMPLE 6.1
Group Algebra over Klein's 4 group
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G has the following presentation:

G=<xy|x2=y2=(xy)?=1>=C, %,
RG={a+bx+cy+dxylab,cd€R}

Let g(x,y) = a, + byx + ¢,y +d,xy € RG (given)

Now defineamap ¢:RG - RG, ¥(f(x,y)) = g(x.y) - f(x,y) —g(x.y) = f(x.y)
Then v is bijective if and only if the following matrix A is invertible over R

a; —1 b, c dy
A= b, a,—1 d; (o]
C1 d, a; —1 b,
dy c b, a; —1
As a special case if R = (P(X),+,;1 = X,0 = {}) be a Boolean Ring with |[X| < o b,,c;,d; forms a partition
of a;.

Theorem 6.2: Let R = (Zy, +y,%y) be a ring of integers modN, where N is a fixed large positive integer.
Let f(x,y) = a + bx + cy + dxy be a given polynomial over (Zy, +y,%y).
We can reconstruct f(x, y) from f(aox + By, a,y + B,) if and only if gcd(ay. a;, N) = 1
Proof:

flaox + By, a1y + B1)
(1 Bo B BoBi] fa a
0 ao O «auB| [b|_|b
0 0 a Boay| H e
0 0 0 apa,l Yd d’
= (a+bBy + cfy +dBofy) + (bay + dagfy)x + (cay + dfya;)y + daga xy
1 By B Bobi]
0 ay 0 ayB
0 0 a PBoy
0 0 0 ayal
Determinant of this matrix = (a, - a;)?
Similarly,
taking f(x,y,z) =a'+ b'x+c'y+d'z+e'xy+ f'yz+ g'xz+ h'xyz
we define f(agx + By, a1y + By, ayz + B,) such that gcd(ay - @4 - a4, N) =1

€ M,(Zy) is invertible iff gcd (ep - @4, N) =1

1 Bo B B BoBi BBz BoBz BoBiBz]
0 a9 0 0 aB 0 a B, aoPipe
0 0 oo 0 a1y Bib 0 a1 80P
A= 0 0 0 o 0 afr @By BBy
0O 0 0 0 auu 0 0 ayaqfs
0O 0 0 O 0 a,a, 0 a ;B
0O 0 0 O 0 0 agt,  aofifs
0 0 0 O 0 0 0 ayoa,l

€ Mg(Zy) is invertible iff gcd (g - @y - a5, N) =1
Determinant of this matrix = (a, - a; - a,)*
Example 6.2: Let R be any given commutative ring with identity. Let G be the given group generated by {x, y}
such that x? = y2 =1, xy = yx.
Consider the group algebra RG

xy xy | v | x 1
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Now our basic ring is RG, where, we are considering polynomials over RG.

Let f(x,y) = a + bx + cy + dxy be the given polynomial in" "and " y over RG.

We can reconstruct f(x, y) from f(x,y) - g(x,y), where g(x,y) = a, + b;x + c;y + d,xy iff
a, by ¢ dy
by a dy ¢
¢ dy a; by
d ¢ b a

is invertible over R.
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