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Abstract—In this paper, we study an encryption scheme based on group algebra 퐆 over the 
boolean ring 퐑. The key idea of the proposal is that for a given commutative ring, we can define 
different functions over ℤ푵 and use them as the underlying structure. Using this group algebra 
퐑퐆, we are giving a criterion to encrypt the message and to retrieve it using the RSA Algorithm. 
For the decryption algorithm to work, without any loss of data, the invertibility of the latin 
square over 퐑 is the necessary condition.  
 
Index Terms— Cryptographic bijective functions; One-way functions; Boolean Rings; Trace; 
Automorphism; Group Algebra; Partition of a set. 

I. INTRODUCTION 

In 1976, Whitefield Diffie and Martin Hellman published the first practical public key cryptosystem for secure 
data transmission [10]. The Diffie-Hellman Algorithm was based on the discrete log problem. Since then, many 
public key cryptography algorithms have been created. The RSA scheme [9] discovered in 1978 by Ron Rivest, 
A. Shamir and Adleman was based on the factorization problem of the modulus, factorising of mod푵 is an 
impractical task if the integer 푵 is sufficiently large, where 푵 is the product of two distinct large primes. Since 
then, many developments have been made in the field of cryptography. Elliptic Curves based Cryptography has 
an advantage over the nonelliptic curve cryptography with the smaller key sizes [4][5]. Elliptic Curve 
cryptography is based on the algebraic structure of elliptic curves over finite fields. 
Here, we are using Special finite non-abelian groups in order to make the bijective functions more efficient and 
suitable for encryption and decryption purpose. We are introducing the concept strongly co - prime integers for 
constructing more trap door functions. In this paper , we study some important properties of strongly co-prime 
integers and their effective use in public key cryptography. In recent past many works have been done to 
improve the cryptosystems using the group algebra over commutative and non-commutative rings. 
It is necessary for a good cryptosystem to be practically impossible for the attacker to break [2]. A good 
cryptosystem would comparatively take more time while the attacker is trying to break into it. This can either be 
achieved by making a moderately longer key or by creating a more advance algorithm that would make the 
entire cryptosystem reluctant to any damage. 
Here, in this paper, we present some new techniques to encrypt and decrypt the messages. Some basic concepts 
of group algebra and, linear algebra have been used and applied to make a new algorithm. The RSA Algorithm 
[8] has been used as the basis of the cryptosystem whose definition we would like to record: 
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Encryption: Given the public key (푛, 푒) = 푘  and the plaintext 푥, the encryption function is 풚 = 풆풌풑풖풃(풙) ≡
풙 mod풏, where 푥,푦 ∈ ℤ . 
Decryption: Given the private key 푑 = 푘  and the ciphertext 푦, the decryption function is 풙 = 풅풌풑(풚) ≡
풚풅mod풏, where 푥,푦 ∈ ℤ . 
Here, 푒푑 ≡ 1(mod(푝 − 1)(푞 − 1)) and 푛 = 푝푞 
Theorem 1.1 (RSA) The mapping 푓:ℤ → ℤ  where 푛 is the product of 푘 distinct odd primes, 푓(푥) =
푥 (Mod 푛) such that gcd 푒, (푝 − 1)(푝 − 1) … (푝 − 1) = 1 is bijective. Here, ed ≡ 1 Mod (푝 −

1)(푝 − 1) … (푝 − 1)  and 푛 = 푝 ⋅ 푝 …푝  
For a function ' 푓 , if there exist some secret information ' 푦 , such that if 푓(푥) and 푦 are known, then 푥 can be 
computed easily. Such a function is known as the trapdoor function. A trapdoor function is a functionthat is easy 
to compute in one direction, yet difficult to compute in the opposite direction (finding its inverse) without special 
information, called the "trapdoor". A one-way function is a function that is easy to compute on every input, but 
hard to invert given the image of a random input. In this direction, many researchers started constructing trap 
door permutation polynomial over finite fields. Now we would like to recall an interesting result due to R.A. 
Mollin and C. Small. [8] 
Theorem 1.2: Let 퐺퐹(푞) be a given finite field with q elements having characteristic different from '3'. 
Then 푓(푥) = 푎푥 + 푏푥 + 푐푥 + 푑(푎 ≠ 0) permutes 퐺퐹(푞) if and only if 

푏 = 3푎푐 and 푞 ≡ 2(Mod 3) 
Now, let us use this theorem for constructing a permutation polynomial over ℤ  for large odd prime  (푝 ≠ 3). 
Using the quadratic reciprocity law, we can deduce the following theorem 
Choose an odd prime 푝 such that 푝 ≡ 11(Mod 12) 
Then choose 푎, 푐 ∈ set of quadratic residues mod푝 or 푎, 푐 ∈ set of quadratic non-residues mod푝 Then the 
polynomial 푓(푥) = 푎푥 + 푏푥 + 푐푥 + 푑 ∈ ℤ [푥] permutes ℤ . 
If we choose a prime 푝 such that 푝 ≡ 5(Mod 12), 
Then we have to select 푎 ∈ set of quadratic residues mod푝 but 푐 ∈ set of quadratic non-residues mod푝 
or if 푎 ∈ set of quadratic non-residues mod푝 and 푐 ∈ set of quadratic residues mod푝 
Then the polynomial 푓(푥) = 푎푥 + 푏푥 + 푐푥 + 푑 ∈ ℤ [푥] permutes ℤ . 
Let us now observe, how we can use some elementary number theory to construct some simple encryption and 
decryption schemes. 
For more works on Analytic Number theory, the reader may refer to [1]. 

A. Some examples to construct bijective functions 
In this section, we give some more methods for the secure encryption of data using different fields like vectors, 
rings, matrices etc. This can be understood better with help of the following theorems and examples. 
Example 1.1: Select Four Secret distinct positive integers 푎, 푏,푃,푄 where 푃 and 푄 are very large odd primes 
such that 푎푏 > 푃푄 
Define 푀 = 푎푏 − 푃푄 
Set 푒 = (푃푄) 푀 + 푎 and 푑 = (푃푄)푀 + 푏 
Consider 푒푑 − 푃푄 = 푀((푃푄) 푀 + 푎(푃푄) + 푏(푃푄) + 1) 
Define 푁 = (푃푄) 푀 + 푎(푃푄) + 푏(푃푄) + 1 
Then, we observe: gcd (푒,푁) = gcd (푑,푁) = 1 
Define ℤ = {0,1,2, … ,푁 − 1} 
The map 푓:ℤ( ) → ℤ( ) defined by 푓(푥, 푦) = (ex (Mod 푁), 푑푦(Mod 푁)) is bijective. 
Example 1.2: Let us now extend the above example further 
Take four distinct positive integers 푎,푏, 푐,푃 where 푃 is an odd prime. such that 푎푏푐 > 푃. 
Define 푀 = 푎푏푐 − 푃 
Set 푒 = 푃 푀 + 푎;푑 = 푃 푀 + 푏, and 푓 = 푃푀 + 푐. 
Now, construct 푒푑푓 − 푃 = 푀(푃 푀 + 푎푃 푀 + 푏푃 푀 + 푎푏푃 + 푃 푀푐+ 푎푐푃 + 푏푐푃 + 1) 
Then, we observe: gcd (푒,푁) = gcd (푑,푁) = gcd (푓,푁) = 1 The map 휙:ℤ( ) → ℤ( ) defined by 휙(푥,푦, 푧) =
(ex (Mod 푁), 푑푦(Mod 푁), 푓푧(Mod 푁)) is bijective. 
Example 1.3: Let us take four distinct positive integers 풂,풃, 풄,풅 greater than or equal to 2 . 
Define 푁 = (abcd (푎 + 1)(푏 + 1)(푐 + 1)(푑 + 1)) + 1 
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Here, we observe that gcd (푎,푁) = gcd (푏,푁) = gcd (푐,푁) = gcd (푑,푁) = 1 
and, gcd (푎 + 1,푁) = gcd (푏 + 1,푁) = gcd (푐 + 1,푁) = gcd (푑 + 1,푁) = 1 
also, gcd (푎(푎 + 1) ,푁) = 1 
Define ℤ = {0,1,2, …푁 − 1}(Mod 푁) a ring of integers with respect to +  and × . 
Now, let us construct a bijective function 푓:ℤ( ) → ℤ( ) 
푓(푥,푦, 푧) = (푢,푣,푤) 
where 푢 = 푎 푥 − 푎푦 + 푘 
푣 = (2푎 + 1)푥 + 푎푦 + 푙 
푤 = 푎푧 +푚, 
Here, 푘, 푙,푚 ∈ ℤ . 
Similarly, ' 푎 ' can be replaced by  푏 ,  푐  and  푑 . 

Example 1.4: Define ℱ = 푎 푏
푐 푑 ∣

푎,푏, 푐,푑 ∈ ℤpos 

(푎, 푏) = (푐,푑) = 1
(푎, 푐) = (푏,푑) = 1

 

Proposition 1.1: Suppose 푎 푏
푐 푑 , 훼 훽

훾 훿 ∈ ℱ 

Then 푎훼 푏훽
푐훾 푑훿 ∈ ℱ if and only if 푎 훽

훾 푑 , 훼 푏
푐 훿 ∈ ℱ. 

Proof: (푎훼, 푏훽) = (푎,푏) × (훼,훽) ×
( , )

,
( , )

×
( , )

,
( , )

 

Similarly, (푎훼, 푐훾) = (푎, 푐) × (훼,훾) ×
( , )

,
( , )

×
( , )

,
( , )

 
Therefore, (푎훼,푏훽) = (푎,훽) ⋅ (푏,훼) 
Similarly, (푐훾, 푑훿) = (푐, 훿) ⋅ (푑, 훾) 
(푏훽, 푑훿) = (푏, 훿) ⋅ (훽, 푑) 
(푎훼, 푐훾) = (푎,훾) ⋅ (푐,훼) 

Proposition 1.2: Suppose 푎 푏
푐 푑 , 훼 훽

훾 훿 ∈ ℱ 

Define 푵 = 푎훼푑훿 + 푐훾푏훽 
퐍ퟏ = 푎푑 + 훽훾 
퐍ퟐ = 훼훿 + 푏푐 

Assume 푎훼 푏훽
푐훾 푑훿 ∈ ℱ 

Define 푓:ℤ( ) → ℤ( ) 
푓(푥,푦, 푧) = (훼 + (푎훼 + 푑훿)푥 + 푑훿푦(Mod 푁),훽 + 푐훾푥 + 푐훾푦(Mod 푁),훾 + (푏 훽 푐훾)푧(Mod 푁)) 
푓 :ℤ( ) → ℤ( ) 
푓 (푥,푦, 푧) = 훼 + (푎훾 + 푑)푥 + 푑푦(Mod 푁 ),훾푥 + 훾푦 + 훽 (Mod 푁 ),훾 + (훽 훾)푧(Mod 푁 )  
푓 :ℤ( ) → ℤ( ) 
푓 (푥,푦, 푧) = 훼 + (훼푐 + 훿)푥 + 훿푦(Mod 푁 ),훽 + 푐푥 + 푐푦(Mod 푁 ),훾 + (푏 푐)푧(Mod 푁 )  
Then, 푓 is bijective if and only if 푓  and 푓  are bijective. Example 1.5: Let 푝, 푞, 푟 be three given (distinct) odd 
primes 
Assume 푟 + 푞 ≢ 0(Mod 푝) 
Consider the following 2 × 2 matrix " 퐴 " 

퐴 =
푟 푝 + 푞푟

푝푞 + 푝푟 푞 + 푝푟 + 푞푟
Per (퐴) = 푟푞 + 푝푟 + 푞푟 + 푝 푞 + 푝 푟 + 푝푞 푟 + 푝푞푟
 = (푝푞 + 푞)푟 + (푝 + 푝 )푟 + (푝푞 + 푞 )푟 + 푝 푞
 Define 푁: = Per (퐴)
 = (푝푞 + 푞)푟 + (푝 + 푝 )푟 + (푝푞 + 푞 )푟 + 푝 푞,

 

Now, we can show that 
gcd (푟(푝푞 + 푝푟 ),푁) = 1 
gcd ((푝 + 푞푟)(푞 + 푝푟 + 푞푟 ),푁) = 1 
gcd (푟(푝 + 푞푟),푁) = 1 
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gcd (푝푞 + 푝푟 )(푞 + 푝푟 + 푞푟 ),푁 = 1 
Define a bijective map 푓:ℤ( ) → ℤ( ) as follows: 
푓(푥,푦, 푧) = ([훼 + (푞푟 + (푝 + 1)푟 + 푞 )푥 + (푞 + 푝푟 + 푞푟 )푦](Mod 푁), 
[훽 + (푝푞 + 푝푟 )(푥 + 푦)](Mod 푁), [훾 + (푝 + 푞푟) (푝푞 + 푝푟 )푧](Mod 푁)) 

Det 푞푟 + (푝 + 1)푟 + 푞 푞 + 푝푟 + 푞푟
푝푞 + 푝푟 푝푞 + 푝푟

= [(푝푞 + 푝푟 )(푟)](Mod 푁) 

So, gcd ([(푝푞 + 푝푟 )(푟)],푁) = 1 
Therefore " 푓 " is bijective. 
Proposition 1.3. Let 풂 be the non-zero vector in ℝ . Then 푇풂(푥) = (풂 × 풙)− 풂− 풙, and 
푆 (푥) = 풙× 풂 − 풂 − 풙,풂 × 푥,푥 × 푎 denotes vector cross product in 푅  is bijective from ℝ  to ℝ . 
If we consider 풂⃗ = (푎 , 푎 ,푎 ) ∈ ℤ  over a finite field with 푝 where 푝 is an odd-prime. Then the map 
푇 (푥) is bijective if and only if 푎 + 푎 + 푎 ≢ −1(mod푝). 
Theorem 1.3: Let 풂⃗, 풃⃗ be any non-zero vectors and 푦 is any vector in 푅 . 
Then 푇(풂⃗,풃⃗)(푦⃗) = (풃⃗ ⋅ 푦⃗)풂⃗ − (푏⃗ ⋅ 푎⃗)푦⃗ + (푦⃗ × 푎⃗) + (푦⃗ × 푏⃗) + 푦⃗ + (푎⃗ × 푏⃗) + 푎⃗ − 푏⃗ is a bijective map from ℝ  
onto ℝ . 
Proof: 
Let 푎⃗ be a given non-zero vector in 푅 . 
Define: 푇 ⃗(푥⃗) = 푎⃗ × 푥⃗ − 푎⃗ − 푥⃗ 

푆 ⃗(푥⃗) = 푥⃗ × 푎⃗ − 푎⃗ − 푥⃗ 
푇⃗,푆 ⃗ both are bijective maps from 푅  onto itself. 
Select 푎⃗, 푏⃗ are given non-zero vectors in 푅 . 
Now, let us compute 푆 ⃗ ∘ 푇 ⃗:ℝ → ℝ  

푆 ⃗ ∘ 푇⃗  = 푆 ⃗(푇 ⃗(푥))
 = 푆 ⃗(푎⃗ × 푥⃗ − 푎⃗ − 푥⃗)
 = (푎⃗ × 푥⃗ − 푎⃗ − 푥⃗) × 푏⃗ − (푎⃗ × 푥⃗ − 푎⃗ − 푥⃗) − 푏⃗
 = (푎⃗ × 푥⃗) × 푏⃗ − (푎⃗ × 푏⃗)− (푥⃗ × 푏⃗)− (푎⃗ × 푥⃗) + 푎⃗ + 푥⃗ − 푏⃗
 = (푎⃗ × 푥⃗) × 푏⃗ + (푏⃗ × 푎⃗) + (푏⃗ × 푥⃗) + (푥⃗ × 푎⃗) + 푎⃗ + 푥⃗ − 푏⃗
 = (푎⃗ ∙ 푏⃗)푥⃗ − (푥⃗ ∙ 푏⃗)푎⃗ + (푥⃗ × 푎⃗) + (푏⃗ × 푥⃗) + 푥⃗ + (푏⃗ × 푎⃗) + 푎⃗ − 푏⃗

 

Now, we use the above-mentioned theorems to prove some corollaries. Corollary 1.1: Let 푎⃗ = (푎 ,푎 , 푎 ) ∈
ℤ( ) form a commutative ring with respect to +  and × . 
푇⃗:ℤ

( ) → ℤ( ) defined by 푇⃗(푥) = 푎⃗ × 푥⃗ − 푎⃗ − 푥⃗ for all 푥 ∈ ℤ . Then 푇 ⃗ is a bijective function if and only if 
(푎 + 푎 + 푎 ) ≡ 푟 − 1(mod푁), where gcd (푟 ,푁) = 1.  

II. PROOF 

Suppose 푇 (푥⃗) = 푇 (푦⃗) for all 푥,푦 ∈ ℤ . Then 
푎⃗ × 푥⃗ − 푎⃗ − 푥⃗ = 푎⃗ × 푦⃗ − 푎⃗ − 푦⃗ 
(푎⃗) × ((푥⃗) − (푦⃗)) = ((푥⃗) − (푦⃗)) 

푖 푗 푘
푎 푎 푎

푥 − 푦 푥 − 푦 푥 − 푦
= (푥 − 푦 ,푥 − 푦 ,푥 − 푦 )

푎 (푥 − 푦 )− 푎 (푥 − 푦 ),  푎 (푥 − 푦 )− 푎 (푥 − 푦 ),  푎 (푥 − 푦 )− 푎 (푥 − 푦 )
 = (푥 − 푦 ,푥 − 푦 ,푥 − 푦 )
 −(푥 − 푦 )− 푎 (푥 − 푦 ) + 푎 (푥 − 푦 ) = 0
푎 (푥 − 푦 )− (푥 − 푦 ) + 푎 (푥 − 푦 ) = 0
 −푎 (푥 − 푦 ) + 푎 (푥 − 푦 )− (푥 − 푦 ) = 0
−1 −푎 푎
푎 −1 −푎
−푎 푎 −1

푥 − 푦
푥 − 푦
푥 − 푦

=
0
0
0

 

In order to get a trivial solution, we must have 
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det 
−1 −푎 푎
푎 −1 −푎
−푎 푎 −1

∈ 푈(ℤ ) 

Let us consider 
then gcd (lmod 푁,푁) = 1 

푙 =
−1 −푎 푎
푎 −1 −푎
−푎 푎 −1

 

Now, let us compute 푙mod푁 
−1(1 + 푎 ) + 푎 (−푎 − 푎 푎 ) + 푎 (푎 푎 − 푎 ) mod푁

gcd (−(1 + 푎 + 푎 + 푎 )mod푁,푁) = 1
 −(1 + 푎 + 푎 + 푎 ) ≡ 푟(mod푁), where gcd (푟,푁) = 1
(1 + 푎 + 푎 + 푎 ) ≡ −푟(mod푁)
 (푎 + 푎 + 푎 ) ≡ 푁 − 푟 − 1(mod푁)
 (푎 + 푎 + 푎 ) ≡ 푟 − 1(mod푁), where gcd (푟 ,푁) = 1

 

푇⃗:ℤ
( ) → ℤ( ) is bijective if and only if (푎 + 푎 + 푎 ) ≡ 푟 − 1(mod푁), where gcd (푟 ,푁) = 1 

III. COROLLARY1. 2 

 Let, 푎⃗, 푏⃗ ∈ ℤ( ) with 푎⃗ = (푎 ,푎 , 푎 ), 푏⃗ = (푏 ,푏 ,푏 ).
(푎 + 푎 + 푎 ) ≡ 푟 − 1(mod푁)
(푏 + 푏 + 푏 ) ≡ 푠 − 1(mod푁)

 

where gcd (푟 ,푁) = gcd (푠 ,푁) = 1. 
푇( ⃗, ⃗)(푥⃗) = (푏⃗ ∙ 푥⃗)푎⃗ − (푏⃗ ∙ 푎⃗)푥⃗ + (푥⃗ × 푎⃗) + (푥⃗ × 푏⃗) + 푥⃗ + (푎⃗ × 푏⃗) + 푎⃗ − 푏⃗ is bijective from ℤ( ) to ℤ( ) 

IV. ENCRYPTION AND DECRYPTION OVER FINITE BOOLEAN RINGS 

A. Boolean Rings 
Now we shall see how to reconstruct the original message text using boolean rings over group algebras. In this 
context, let us review the definition of Boolean Rings [3]. 
Let 푋 be any given finite set (non-empty).Consider 풫(푋) = { set of ALL subsets of  } 
Define ⊕ and ∙ on 풫(푿) as follows: 

푨⊕푩 = (푨 − 푩)∪ (푩 −푨)
푨 ∙ 푩 = 푨 ∩푩,

 

 where 퐴,퐵 ∈ 풫(푋) 

 
Figure 1 : Boolean Ring 

This ring is: 

a) Commutative 



 
6 

퐴⊕퐵 = 퐵⊕ 퐴 

퐴 ∙ 퐵 = 퐵 ∙ 퐴, where 퐴,퐵 ∈ 풫(푋) 

b) Associative 

퐴⊕ (퐵 ⊕ 퐶) = (퐴⊕퐵) ⊕퐶 

퐴 ∙ (퐵 ∙ 퐶) = (퐴 ∙ 퐵) ∙ 퐶, where 퐴,퐵,퐶 ∈ 풫(푋) 

c) Distributive 

(퐴⊕퐵) ∙ 퐶 = (퐴 ∙ 퐶) ⊕ (퐵 ∙ 퐶) 

(퐴 ∙ 퐵) ⊕퐶 = (퐴⊕ 퐶) ∙ (퐵⊕ 퐶), where 퐴,퐵,퐶 ∈ 풫(푋) 

The empty set (휙) is the zero of the ring. 

The finite set 푋 is the one of the ring. 

Hence, (풫(푋),⊕,∙,휙,푋) forms a Boolean Ring. 

Let 푼 = 퐴 퐵
퐶 퐷 , 휈 = 퐸 퐹

퐺 퐻  

then the matrix multiplication is defined as follows: 

풖 ⋅ 풗 = 퐴 퐵
퐶 퐷 ⋅ 퐸 퐹

퐺 퐻 = 퐴퐸⊕퐵퐺 퐴퐹 ⊕퐵퐻
퐶퐸 ⊕퐷퐺 퐶퐹 ⊕퐷퐻  ⟨퐴퐵 = 퐴 ∙ 퐵⟩ 

While decrypting the message, the invertibility of the latin square, formed over the boolean ring 퐑, is a necessary 
condition. That latin square can be formed using various techniques mentioned below. 

V. MAIN RESULT: ENCRYPTION SCHEMES OVER SQUARE MATRICES 

In this section we give an algorithm to encrypt as well as decrypt the data using square matrices. Here, the square 

matrices are constructed with its elements from the power set of the boolean set 푿. Let 푴 =
푌
푌
푌

 be the message 

that we have to encrypt. Where 푌 ,푌 ,푌 ∈ 푿 
To encrypt the message, we need a key. 

Let 풦 =
푋⊕ 퐴퐸⊕퐵퐹 퐴⊕퐵퐺 퐵

퐸 ⊕ 퐶퐹 푋 ⊕퐶퐺 퐶
퐹 퐺 푋

 be the Encryption key, Det (풦) = 푋. 

where, 퐴,퐵,퐶,퐸,퐹,퐺 ∈ 풫(푋) 
Define Enc (푴) = 풦 ⋅푴 

 =
푋⊕ 퐴퐸⊕퐵퐹 퐴⊕퐵퐺 퐵

퐸 ⊕ 퐶퐹 푋⊕퐶퐺 퐶
퐹 퐺 푋

⋅
푌
푌
푌

=
푌
푌
푌

 (say) 

 =
푌 ⊕ 퐵퐹푌 ⊕ 퐴푌 ⊕퐵퐺푌 ⊕퐵푌
퐸푌 ⊕ 퐶퐹푌 ⊕ 푌 ⊕퐶퐺푌 ⊕퐶푌

퐹푌 ⊕ 퐺푌 ⊕ 푌
=

푌
푌
푌

 

Here, 
푌 = 푌 ⊕ 퐵퐹푌 ⊕ 퐴푌 ⊕퐵퐺푌 ⊕퐵푌  
푌 = 퐸푌 ⊕ 퐶퐹푌 ⊕ 푌 ⊕ 퐶퐺푌 ⊕퐶푌  
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푌 = 퐹푌 ⊕퐺푌 ⊕ 푌  
To decrypt this message, 

퐷 (ℳ) = 풦

 =
1
푋

푋 퐴 퐴퐶⊕ 퐵
퐸 푋⊕ 퐴퐸 퐶 ⊕ 퐶퐴퐸⊕퐵퐸
퐹 퐺 ⊕퐺퐴퐸 ⊕ 퐴퐹 푋⊕퐵퐹⊕ 퐶퐺 ⊕ 퐸퐵퐺 ⊕퐶퐺퐴퐸

 =
푋 퐴 퐴퐶⊕ 퐵
퐸 푋⊕ 퐴퐸 퐶 ⊕ 퐶퐴퐸⊕퐵퐸
퐹 퐺 ⊕퐺퐴퐸 ⊕ 퐴퐹 푋⊕퐵퐹⊕ 퐶퐺 ⊕ 퐸퐵퐺 ⊕퐶퐺퐴퐸

 ∣∵ 푋 is the one in the ring 풫(푋) ∣

 

Here, as we have mentioned, that in a Boolean Ring, the one (1) of the ring is the finite set 푿. In order to 
maintain the invertibility of the matrix, it is important that we construct the matrices with their determinant = 푿. 
This determinant being equal to the one of the finite ring ensures the invertibility and hence the decryption is 
possible without the loss of data. 
Some of the methods to construct such matrices have been discussed below. 

A. To Construct a square matrix with determinant = 푋 using triangular matrices 
Let 푋 be any given finite set (non-empty). Consider 풫(푋) = { set of ALL subsets of 푋} 
Define ⊕ and ∙ on 풫(푋) as follows: 
Define two square matrices 휆 and 휇 

퐴⊕퐵 = (퐴 − 퐵) ∪ (퐵 − 퐴) = 퐵 ⊕퐴
퐴 ∙ 퐵 = 퐴 ∩ 퐵 = 퐵 ∙ 퐴,   where 퐴,퐵 ∈ 풫(푋) 

풖 =
푋 퐴 퐵
휙 푋 퐶
휙 휙 푋

;풗 =
푋 휙 휙
퐸 푋 휙
퐹 퐺 푋

 where 퐴,퐵,퐶,퐸,퐹,퐺 ∈ 풫(푋)

풖 ⋅ 풗 =
푋 ⊕퐴퐸 ⊕퐵퐹 휙⊕퐴푋⊕퐵퐺 휙⊕퐵푋
휙⊕퐸⊕ 퐶퐹 휙⊕푋⊕퐶퐺 휙⊕휙⊕퐶
휙⊕푋퐹 휙⊕퐺 푋

풖 ⋅ 풗 =
푋⊕ 퐴퐸⊕퐵퐹 퐴⊕퐵퐺 퐵

퐸 ⊕ 퐶퐹 푋⊕ 퐶퐺 퐶
퐹 퐺 푋

→ (푲)

det (풖 ⋅ 풗) = [(푋⊕퐴퐸 ⊕퐵퐹)(푋 ⊕퐶퐺 ⊕퐶퐺)]⊕ [(퐴⊕퐵퐺)(퐸 ⊕퐶퐹 ⊕퐶퐹)]⊕ [퐵(퐸퐺 ⊕ 퐶퐹퐺⊕ 퐹⊕ 퐶퐺퐹)]
 = 푋⊕ 퐴퐸⊕퐵퐹⊕퐴퐸⊕퐵퐺퐸 ⊕퐵퐸퐺 ⊕퐵퐹
 = 푋

 

VI. EXAMPLE 2.1 

Assume 푋 = {1,2,3,4,5} and 풫(푋) be the power set of 푋 
here, det (풖 ⋅ 풗) = 푋 

풖 =
푋 {1,2} {2,3}
휙 푋 {1,2,3}
휙 휙 푋

;풗 =
푋 휙 휙

{1,3} 푋 휙
{1,2} {3,4} 푋

풖 ⋅ 풗 =
{3,4,5} {1,2,3} {2,3}
{2,3} {1,2,4,5} {1,2,3}
{1,2} {3,4} 푋

 

Similarly, using different finite non-empty sets " 푋 " and taking different elements from their power set, we can 
obtain infinite number of square matrices of any order. 

Similarly, we can create a 4-square matrix by multiplying 풰 =

푋 퐴 퐵 퐶
휙 푋 퐷 퐸
휙 휙 푋 퐹
휙 휙 휙 푋

 and 

풗 =

푋 휙 휙 휙
퐺 푋 휙 휙
퐻 퐼 푋 휙
퐽 퐾 퐿 푋

 in order to get a 4-sqaure matrix 풟 = 푼 ⋅ 풗 whose determinant = 푋. 
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풟 = 풖 ⋅ 풗 =

푋⊕ 퐴퐺⊕퐵퐻⊕ 퐶퐽 퐴⊕ 퐵퐼 ⊕퐶퐾 퐵⊕ 퐶퐿 퐶
퐺 ⊕퐷퐻⊕퐸퐽 푋⊕퐷퐼 ⊕ 퐸퐾 퐷⊕퐸퐿 퐸

퐻⊕ 퐹퐽 퐼 ⊕ 퐹퐾 푋 ⊕퐹퐿 퐹
퐽 퐾 퐿 푋

 where 퐴,퐵,퐶,퐷,퐸,퐹,퐺,퐻, 퐼, 퐽,퐾, 퐿 ∈ 

풫(푋) 

A.  To construct a square matrix with determinant = 푋 using square tridiagonal matrices 
Let 푋 be any given finite set (non-empty). Consider 풫(푋) = { set of ALL subsets of  } 

Let 푼 =
푋 퐴 휙
퐵 푋 퐴
휙 퐵 푋

 and 퓋 =
푋 퐶 휙
퐷 푋 퐶
휙 퐷 푋

, we have Det (푼) = Det (푽) = 푋. 

Here, 퐴,퐵,퐶,퐷 ∈ 풫(푋) 

풖 ⋅ 풗 =
푋⊕ 퐴퐷 퐶⊕ 퐴 퐶퐴
퐵 ⊕퐷 푋⊕퐵퐶⊕퐴퐷 퐶 ⊕ 퐴
퐵퐷 퐵⊕퐷 푋⊕퐵퐶

, Det (풖 ⋅ 풗) = Det (풖) ⋅ Det (풗) = 푋 ⋅ 푋 = 푋 

VII. EXAMPLE 2.2 

Assume 푋 = {1,2,3,4,5} and 풫(푋) be the power set of 푋. 
Det (풖 ⋅ 풗) = 푋 

풖 =
푋 {2,3} 휙

{1,2,3} 푋 {2,3}
휙 {1,2,3} 푋

;풗 =
{3,4,5} {1,2,3} {2,3}
{2,3} {1,2,4,5} {1,2,3}
{1,2} {3,4} 푋

풖 ⋅ 풗 =
{2,4,5} {1,2,3} 휙
휙 {4,5} {1,2,3}

{1,3} {1,2,3,4} {4,5}

 

A.  To construct a square matrix with determinant = 푋 using partitions of a set 
Let " 푋 " be a non-empty finite set, 

푋 = {푎 ,푎 , 푎 , … , 푎 } 
Define 퐴 ,퐴 ,퐴 , … ,퐴  as the partitions of the set 푋. 
Create a matrix " 푼" using the 퐴 푠 as latin square. 

푋 =   퐴 ;퐴 ∩ 퐴 = 휙∀푖 ≠ 푗. 

Det (풖) = 퐴 ⊕ 퐴 ⊕퐴 ⊕ …⊕퐴 = 푋 

VIII. EXAMPLE 2.3: 

Let 푋 = {푎, 푏, 푐, 푑, 푒, 푓,푔} 
퐴 = {푎, 푐,푑} 
퐴 = {푏, 푒} 
퐴 = {푓} 
퐴 = {푔} 
Here, 퐴 ,퐴 ,퐴 ,퐴  are partitions of 푋. 

Define 푼 =

퐴 퐴 퐴 퐴
퐴 퐴 퐴 퐴
퐴 퐴 퐴 퐴
퐴 퐴 퐴 퐴

 

Determinant = ∑ ∈  (−1) 푎 ( ) ⋅ 푎 휎(2) ⋅ 푎 ( ) … 푎 ( ) 
Hence, Det (푼) = 퐴 ⊕ 퐴 ⊕퐴 ⊕퐴 = 푋 

IX. PUBLIC KEY CRYPTOGRAPHY USING PERMANENT AND TRACE OF MATRICES 

In a square matrix, the permanent of a matrix is defined as follows: 
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Per (푈) =  
∈

푎 ( ) ⋅ 푎 ( ) ⋅ 푎 ( ) …푎 ( ) 

A. Encryption Scheme using the Permanent of a Matrix 
1. Consider the following 3 × 3 matrix 

퐴 =
푝 푝 푠
푞 푞 푟
푟 푝 푟

 where 푝,푞, 푟, 푠 are all distinct odd primes with 

푝 + 푟 ≢ 0(Mod 푞)
푞 + 푝 푟 + 푝푞 + 푝푟 ≢ 0(Mod 푠)

 

X. STEP 1: 

Arbitrary select 푝, 푟 distinct odd primes. 
STEP 2: 
Choose an odd prime " 푞 " which is distinct from 푝, 푟 such that 
STEP 3: 

푝 + 푟 ≢ 0(Mod 푞) 
Select an odd prime "s" which is distinct from 푝,푞, 푟 such that 
1. Here, 

푞 + 푝 푟 + 푝푞 + 푝푟 ≢ 0(Mod 푠) 
Per (퐴) = 푝푞 푟 + 푝 푟 + 푝 푞푟 + 푝 푟 + 푝 푞푠 + 푞 푟푠 
gcd (푝푞푟, Per (퐴)) = 1 
gcd (푝 푞 푝 = 푝 푞 , Per (퐴)) = 1 
gcd (푟 s, Per (퐴)) = 1 3. In fact 

gcd  
∈

 푥 , Per (퐴) = 1 

where 푆 = {푝, 푝 ,푝 ,푞,푞 , 푟, 푟 , 푟 , 푠} 
2. Consider the Diagonal Matrix of order 푘 × 푘 (where 푘 is very large) 
퐷 = Diag (푦 ,푦 ,푦 , … , 푦 ) where 푦 = ∏ ∈   푥  for 1 ≤ 푖 ≤ 푘 
퐷  is private. 
3. Take 푃 ∈ 퐺퐿 (ℤ) any 푘 × 푘 matrix with integral entries and det (푃) = ±1 
푃 is private. 
4. Construct public key 퐶 = 푃 퐷 푃 
5. Define a public key 푁 = Per (퐴), where 퐴 is the private 3 × 3 matrix. 
6. Suppose the given message 

푀⃗ =

푚
푚
⋮
푚 ×

  with 푚 ∈ ℤ .  

XI. ENCRYPTION 

퐸(푀⃗)  = 퐶푀⃗(Mod 푁)

 =

푚
푚
⋮
푚

(Mod 푁)
 

Since, gcd (det 퐶(Mod 푁),푁) = 1, we can compute 퐶 (Mod 푁) easily using the private keys 푃,퐷 . Since " 
푘" is very large, computing 퐶  is very difficult. Hence, the method is secure. 

 10. Decryption = 푪 ퟏ(퐶푀⃗)(Mod 푁)
 = 푀⃗
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A. Encryption Scheme using the Trace of a Matrix 
Take a matrix 필 (ℤ ) 
Let " 푁  be a given fixed large positive integer. 

ℤ( ) =

푥
푦
푧
푤

∣ 푥,푦, 푧,푤 ∈ ℤ  

Suppose message vector, 푚 =

푚
푚
푚
푚

∈ ℤ( ) 

Now, define 푀 =

푚 푚 푚 푚
푚 푚 푚 푚
푚 푚 푚 푚
푚 푚 푚 푚

 

푀 =

푚 푚 푚 푚
푚 푚 푚 푚
푚 푚 푚 푚
푚 푚 푚 푚

 

푀  =

푚 푚 푚 푚
푚 푚 푚 푚
푚 푚 푚 푚
푚 푚 푚 푚

푀  =

푚 푚 푚 푚
푚 푚 푚 푚
푚 푚 푚 푚
푚 푚 푚 푚

 

Define 퐴 = 푎 ,퐵 = 푏 ,퐶 = 푐 ,퐷 = 푑 ∈ 필 (ℤ ) 
Define 푓:ℤ( ) → ℤ( ) 

풇
풎ퟏ
풎
풎ퟑ

=

 trace 퐴푴ퟏ
 trace 퐵푴ퟐ
 trace 퐶푴
 trace 퐷푴ퟒ

 

Then 푓 is bijective if and only if 

퐵 =

푎 + 푎 + 푎 + 푎 푎 + 푎 + 푎 + 푎 푎 + 푎 + 푎 + 푎 푎 + 푎 + 푎 + 푎
푏 + 푏 + 푏 + 푏 푏 + 푏 + 푏 + 푏 푏 + 푏 + 푏 + 푏 푏 + 푏 + 푏 + 푏
푐 + 푐 + 푐 + 푐 푐 + 푐 + 푐 + 푐 푐 + 푐 + 푐 + 푐 푐 + 푐 + 푐 + 푐
푑 + 푑 + 푑 + 푑 푑 + 푑 + 푑 + 푑 푑 + 푑 + 푑 + 푑 푑 + 푑 + 푑 + 푎

 

is invertible over 필 (ℤ ). 
det (퐵) = 훼(mod푁) 
then gcd (훼,푁) = 1 

Now, 푬풏풄

풎ퟏ
풎
풎
풎

=

 trace 퐴푴ퟏ
 trace 퐵푴
 trace 퐶푴
 trace 퐷푴

 

XII. ENCRYPTION USING COMMUTATIVE RING WITH UNITY 

Given a multiplicative group 퐆, and a commutative ring 퐑 with identity, the set 퐑퐆 consisting of all the finite 
formal sums ∑ ∈

( )∈
 훼(푔)푔 with addition defined coefficient-wise and multiplication induced by the 

multiplication in 퐆 together with distributivity is an algebra over 퐑 called the group algebra of the group 퐆 over 
the commutative ring 퐑 [3]. 
Thus for 훼 = ∑ ∈푮  훼(푔)푔 ∈ 푹푮,훽 = ∑ ∈  훽(ℎ)ℎ 푹푮 
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훼 + 훽 =  
∈

 (훼(푔) + 훽(푔))푔

훼훽 =  
∈

     훼(푥)훽(푦) 푔.
 

The element 1 푒푮, where 1  is the identity element of the ring 퐑 and 푒  is the identity element of 퐆, is the 
identity element of the group algebra RG. 
Observe that the map 푔 ↦ 1 푔 is a 1− 1 group homomorphism from 퐆 into the group of units of 퐑퐆, and the 
map 휆 ↦ 휆푒푮 is a 1 − 1 ring homomorphism 푹 → 푹푮. We can thus identify both 퐆 and 퐑 with their respective 
images in 퐑퐆 under the above maps. In particular, we then have 1 = 푒 = 1 푒  and this element is the identity 
element of 퐑퐆 which we will denote by 1 . 
For understanding more basic properties about Group Algebra the reader can refer [4]. Let " 푁 " be a given fixed 
large positive integer. Define 푹 = (ℤ , + ,× ; 1,0) be the given commutative ring with unity. (Ring of integers 
mod푁 ), where ℤ = {0,1,2,⋯ ,푁− 1}. 
Let 푓(풙,풚) = 푎 + 푏풙+ 푐풚 + 푑풙풚 be the given polynomial in the variables 풙 and 풚 over 
(ℤ , + ,× ; 1,0);푎,푏, 푐,푑 ∈ ℤ . 
Choose 푎 , 푏 ,푐 ,푑  in ℤ  such that 

품풄풅(푎 ,푁) = gcd (푎 + 푏 ,푁) = gcd (푎 + 푐 ,푁) = gcd (푎 + 푏 + 푐 + 푑 ,푁) = 1 
Define 푔(푥,푦) = 푎 + 푏 푥 + 푐 푦 + 푑 푥푦 
Here, we are considering the following semi associative group on {풙,풚, 풙풚}. 

∙ 푥 푦 푥푦 

푥 풙 풙풚 풙풚 

푦 풙풚 풚 풙풚 

푥푦 풙풚 풙풚 풙풚 
 

Define 퐸(푓(푥,푦)) = 푓(푥,푦) ⋅ 푔(푥,푦) 
= (푎 + 푏풙+ 푐풚 + 푑풙풚) ⋅ (푎 + 푏 풙+ 푐 풚 + 푑 풙풚) 
= 푎푎 + 푎 푏풙+ 푎 푐풚 + 푎 푑풙풚 + 푎푏 풙+ 푏푏 풙+ 푐푏 풙풚+ 푏 푑풙풚+ 푎푐 풚 + 푏푐 풙풚 + 푐푐 풚 
+푐 푑푥푦 + 푎푑 푥푦 + 푏푑 푥푦 + 푐푑 푥푦 + 푑푑 푥푦 
= 푎푎 + [푎푏 + (푎 + 푏 )푏]풙+ [푎푐 + (푎 + 푐 )푐]풚 
Comparing the coefficients of 풙 and 풚 
+[푎푑 + (푐 + 푑 )푏 + (푏 + 푑 )푐 + (푎 + 푏 + 푐 + 푑 )푑]푥푦 
푎푎 = 푎  → (1) 
푎푏 + (푎 + 푏 )푏 = 푏  → (2) 
푎푐 + (푎 + 푐 )푐 = 푐  → (3) 
푎푑 + (푐 + 푑 )푏 + (푏 + 푑 )푐 + (푎 + 푏 + 푐 + 푑 )푑 = 푑  → (4) 

 
Here, gcd (Det (퐴),푁) = 1 
Now, we can describe encryption of 푓(풙,풚) as 
Enc (푓(풙,풚)) = 푓(풙,풚) ⋅ 푔(풙,풚) 

XIII. SOME ENCRYPTION SCHEMES USING NON-ABELIAN GROUPS 

Now, we shall see few examples of interesting finite non-abelian groups 퐆 which are being used in Encryption & 
Decryption. 
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Example 5.1: Let G be a given group. Let R be a given normal subgroup of G. 
7. 퐺 and 푅 are given to public 
8. Select an endomorphism 훼 ∈ End (퐺) such that 훼(푅) = 푅 and 훼 induces identity on  
9. 훼 ∈ Aut (퐺) ⇔ 훼 ∈ Aut (푅) 
10. 훼 is fixed point free automorphism i.e 훼(푔) = 푔 ⇔ 푔 = 푒 
11. Action of 훼 on R is private (i.e) 훼(푟) is private for all 푟 ∈ 푅 
12. Choose a message 푟 ≠ 푒 ∈ 푅 
For this message 푟 ∈ 푅, we can find a " 푔 " ∈ 퐺 such that 훼(푔) = 푔 ⋅ 푟 Here for this 푟 ∈ 푅,we have one and 
only 푔 ∈ 퐺 such that 훼(푔) = 푔 ⋅ 푟 For, suppose 푔 ,푔 ∈ 퐺 such that 

훼(푔 ) = 푔 ⋅ 푟 → (1)
훼(푔 ) = 푔 ⋅ 푟 → (2)
 ∴ 푔 훼(푔 ) = 푔 훼(푔 )
 ⇒ 푔 푔 = 훼(푔 푔 )
 ⇒ 푔 푔 = 푒 ⇒ 푔 = 푔

 

13. For this message 푟 ∈ 푅,푔 is public and 훼 (푔) is also public. 
The action of 훼  on elements which are not in 푅 is public. 
The action of 훼  on 퐺 − 푅 is public. 
Now 훼(푔) = 푔 ⋅ 푟 
14. Encryption: 

훼 (푔)  = 훼(푔 ⋅ 푟) = 훼(푔)훼(푟)
 = 푔푟 ⋅ 훼(푟)

훼 (푔)  = 훼(푔) ⋅ 훼(푟) ⋅ 훼 (푟)
 = 푔푟훼(푟)훼 (푟)

 

ℎ = 훼 (푔) 
ℎ = gr 훼(푟)훼 (푟) 
15. Decryption: 
푔 ℎ ⋅ [훼 (푟)] [훼(푟)] = 푟 
Here The action of 훼 on 푅 is private. 
Example 5.2: Let 퐺 be a finite group of very large order. 
16. H be a given subgroup of 퐺 such that 푂(퐻) is also very large and 퐻 is given to public. 
17. Let 퐾 be subset of 퐺, which is not a subgroup of 퐺 such that 퐾 is private. 
18. 퐺 = 퐻 ∪ 퐾 
19. Choose a message 푚 ∈ 퐻 but 푚 ∉ 퐾 
20. For this m select a secret 푟 such that 푟 ∈ 퐾 but 푟 ∉ 퐻 
21. Now the encryption of 퐸(푚) = 푟 ⋅ 푚 
22. Since 푟 ∉ 퐻 but 푟 ∈ 퐾 
Decryption = 푟 (푟푚) 

= 푚 
Example 5.3: Let 푃,푄,푅,푆 be any given positive integers greater than or equal to "2". 
23. Define 푵 = 푃푄푅푆+ 1, then 
g.c. 푑(푃,푁) = g.c. 푑(푄,푁) = g.c. 푑(푅,푁) = g.c. 푑(푆,푁) = 1 
24. 퐺 = {(푎, 푏, 푐,푑, 푒) ∣ 푎,푏, 푐,푑, 푒 ∈ ℤ } 
Now in 퐆, we define following binary operation: 
25. (푎 , 푏 , 푐 ,푑 , 푒 ) ∗ (푎 ,푏 , 푐 ,푑 , 푒 ) = (푥, 푦, 푧,푤, 푙) 

 where 

푥  = 푎 + 푎 (mod푵)
푦  = 푏 + 푏 (mod푵)
푧  = 푐 + 푐 (mod푵)
푤  = 푑 + 푑 (mod푵)
푙  = 푎 푏 + 푏 푐 + 푐 푑 + 푒 + 푒 (mod푵)

 

26. Now, this 퐆 is a non-abelian group of order 푵 . 
In this group 퐆, we can observe the following. 
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27. The mapping 푓:퐺 → 퐺, defined by 푓(푔) = 푔 , where 푒 ∈ {푃,푄,푅,푆} is a permutation on 퐆. Now, 
using the above examples, we can construct a finite non-abelian group 퐺 using finite commutative ring 
with identity 푅. This finite group 퐺 can be further used for encryption and decryption of the messages. 

Let 퐑 be a finite commutative ring with identity. 
Define 푮 = {(푥 ,푥 ,푥 ,푥 ,푥 ) ∣ 푥 ,푥 ,푥 ,푥 ,푥 ∈ 푹} 
Now in 퐆, we define the following binary operation: 

 (푥 ,푥 ,푥 ,푥 ,푥 ) ∗ (푦 ,푦 ,푦 ,푦 ,푦 ) = (푧 , 푧 , 푧 , 푧 , 푧 )
 where 푧 = 푥 + 푦
푧 = 푥 + 푦
푧 = 푥 + 푦
푧 = 푥 + 푦
푧 = 푦 푥 + 푦 푥 + 푥 + 푦
 |푮| = |푹|

 

The mapping 푓:푮 → 푮, defined by 푓(푔) = 푔 , where 푔 ⋅ 푐.푑(푒, |푹|) = 1 is a permutation on 퐆. 
Similarly, we can construct another finite non-abelian group 퐇 using 퐑. 
Define 푯 = {(푥 ,푥 ,푥 ,푥 ,푥 ) ∣ 푥 ,푥 ,푥 ,푥 ,푥 ∈ 푹} 
Now in 퐇, we define the following binary operation: 

 where 푧 = 푥 + 푦
(푥 ,푥 ,푥 ,푥 ,푥 ) ∗ (푦 ,푦 ,푦 ,푦 ,푦 ) = (푧 , 푧 , 푧 , 푧 , 푧 )
푧 = 푥 + 푦
푧 = 푥 + 푦
푧 = 푥 + 푦
푧 = 푦 푥 + 푦 푥 + 푦 푥 + 푥 + 푦
 |푯| = |푹|

 

The mapping 휑:푯 → 푯, defined by 휑(ℎ) = ℎ , where g.c. 푑(푒, |푹|) = 1 is a permutation on 퐇. 

XIV. ENCRYPTION SCHEMES OVER GROUP ALGEBRA RG 

Taking 푓(풙,풚, 퐳) = 푎 + 푏풙+ 푐풚 + 푑퐳 + 푒풙풚 + 푓풙풛 + 푔풚풛 + ℎ풙풚퐳 ∈ 푹푮 
where 푎, 푏, 푐, 푑, 푒, 푓,푔,ℎ ∈ 푅 
퐺 = {1,푥, 푦, 푧, 푥푦, 푥푧,푦푧, 푥푦푧} 
푥 = 푦 = 푧 = (푥푦) = (푥푧) = (푦푧) = (푥푦푧) = 1 
푥푦 = 푦푥 and 푦푧 = 푧푦 and 푥푧 = 푧푥 
Then we can reconstruct 푓(풙,풚,풛) from 푓(풙,풚,풛) ⋅ 푔(풙,풚, 풛), where 
푔(풙,풚, 퐳) = 푎 + 푏 풙+ 푐 풚 + 푑 풛 + 푒 풙풚+ 푓 풙풛 + 푔 풚풛+ ℎ 풙풚풛 if and only if 
is invertible over 푹 

퐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
푎 푏 푐 푑 푒 푓 푔 ℎ
푏 푎 푒 푓 푐 푑 ℎ 푔
푐 푒 푎 푔 푏 ℎ 푑 푓
푑 푓 푔 푎 ℎ 푏 푐 푒
푒 푐 푏 ℎ 푎 푔 푓 푑
푓 푑 ℎ 푏 푔 푎 푒 푐
푔 ℎ 푑 푐 푓 푒 푎 푏
ℎ 푔 푓 푒 푑 푐 푏 푎 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

In this case, we are taking 푅 = (풫(푋),⊕,∙; 1 = 푋, 0 = 휙) 
where 푎 , 푏 , 푐 ,푑 , 푒 ,푓 ,푔 ,ℎ ∈ 풫(푋) such that 
푎 ,푏 , 푐 ,푑 , 푒 ,푓 ,푔 ,ℎ  forms a partition of 푿 
퐴 = 

푎  푏  푐  푑  푒  푓  푔  ℎ  

푏  푎  푒  푓  푐  푑  ℎ  푔  

푐  푒  푎  푔  푏  ℎ  푑  푓  
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푑  푓  푔  푎  ℎ  푏  푐  푒  

푒  푐  푏  ℎ  푎  푔  푓  푑  

푓  푑  ℎ  푏  푔  푎  푒  푐  

푔  ℎ  푑  푐  푓  푒  푎  푏  

ℎ  푔  푓  푒  푑  푐  푏  푎  
 
Here, it is interesting to note that 퐴 is a Latin square. 
Theorem 6.1: 퐺 = ⟨1, 푥⟩ × ⟨1,푦⟩ × ⟨1, 푧⟩ × ⟨1,푤⟩, where, 푥 = 푦 = 푧 = 푤 = 1 
푥푦 = 푦푥, 푥푧 = 푧푥,푥푤 = 푤푥,푦푧 = 푧푦,푦푤 = 푤푦, 푧푤 = 푤푧 
i.e 퐺 = 퐶 × 퐶 × 퐶 × 퐶 = Direct Product 
if 4 copies of cyclic groups of order "2". 
Let (푅, +,∙) be given commutative ring with unity 1 ≠ 0. 
Consider the group algebra 푹. 
푅퐺 = {푎 + 푏푥 + 푐푦 + 푑푧 + 푒푤 + 푓(푥푦) + 푔(푥푧) + ℎ(푥푤) + 푖(푦푧) + 푗(푦푤) + 푘(푧푤) + 푙(푥푦푧) 
+푚(푥푦푤) + 푛(푥푧푤) + 표(푦푧푤) + 푝(푥푦푧푤);푎,푏, 푐⋯표, 푝 ∈ 푅} 
Let 풇(푥, 푦, 푧,푤) = 푎 + 푏푥 + 푐푦 + 푑푧 + 푒푤 + 푓(푥푦) + 푔(푥푧) + ℎ(푥푤) + 푖(푦푤) + 푘(푧푤) + 
푙(푥푦푧) +푚(푥푦푤) + 푛(푥푧푤) + 표(푦푧푤) + 푝(푥푦푧푤) ∈ 푅퐺 
Then we can reconstruct 푓(푥,푦, 푧,푤) from 푓(푥,푦, 푧,푤) ⋅ 푔(푥,푦, 푧,푤), where 
푔(푥,푦, 푧,푤) = 푎 + 푏 푥 + 푐 푦 + 푑 푧 + 푒 푤 + 푓 푥푦 + 푔 푥푧+ ℎ 푥푤 + 푖 푦푧+ 푗 푦푤 + 푘 푧푤 
If and only if 

+푙 푥푦푧+푚 푥푦푤 + 푛 푥푧푤 + 표 푦푧푤 + 푝 푥푦푧푤 

 
 
is invertible over 푅 
Corollary 6.1: Let 푹 = (풫(푿), +,∙; 1 = 푋, 0 = {}) be a Boolean Ring with |푋| < ∞ 
푎 ,푏 , 푐 ,푑 , 푒 ,푓 ,푔 ,ℎ , 푖 , 푗 ,푘 , 푙 ,푚 ,푛 ,표 ,푝  forms a partition of 퐗. 
Then we can reconstruct 푓(푥,푦, 푧,푤) from 푓(푥,푦, 푧,푤) ⋅ 푔(푥,푦, 푧,푤) 

XV. EXAMPLE 6.1 

Group Algebra over Klein's 4 group 
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푮 has the following presentation: 
퐺 =< 푥,푦 ∣ 푥 = 푦 = (푥푦) = 1 >= 퐶 × 퐶  
푅퐺 = {푎 + 푏풙+ 푐풚 + 푑풙풚 ∣ 푎, 푏, 푐, 푑 ∈ 푅} 
Let 푔(푥,푦) = 푎 + 푏 푥 + 푐 푦 + 푑 푥푦 ∈ 푅퐺 (given) 
Now define a map 휓:푅퐺 → RG, 휓(푓(푥,푦)) = 푔(푥, 푦) ⋅ 푓(푥, 푦)− 푔(푥, 푦) − 푓(푥,푦) 
Then 휓 is bijective if and only if the following matrix 퐀 is invertible over 퐑 

푨 =

푎 − 1 푏 푐 푑
푏 푎 − 1 푑 푐
푐 푑 푎 − 1 푏
푑 푐 푏 푎 − 1

 

As a special case if 푹 = (푷(푿), +,∙; 1 = 푋, 0 = {}) be a Boolean Ring with |푋| < ∞ 푏 ,푐 , 푑  forms a partition 
of 풂 . 
Theorem 6.2: Let 푅 = (ℤ , + ,× ) be a ring of integers modN, where 푁 is a fixed large positive integer. 
Let 푓(풙,풚) = 푎 + 푏풙+ 푐풚 + 푑풙풚 be a given polynomial over (ℤ , + ,× ). 
We can reconstruct 풇(풙,풚) from 푓(훼 풙+ 훽 ,훼 풚 + 훽 ) if and only if 품풄풅(휶ퟎ.휶ퟏ,푵) = ퟏ 
Proof: 

푓(훼 풙+ 훽 ,훼 풚 + 훽 )
1 훽 훽 훽 훽
0 훼 0 훼 훽
0 0 훼 훽 훼
0 0 0 훼 훼

⋅

푎
푏
푐
푑

=
푎
푏
푐
푑

 = (푎 + 푏훽 + 푐훽 + 푑훽 훽 ) + (푏훼 + 푑훼 훽 )풙+ (푐훼 + 푑훽 훼 )풚 + 푑훼 훼 풙풚
1 훽 훽 훽 훽
0 훼 0 훼 훽
0 0 훼 훽 훼
0 0 0 훼 훼

∈ 푀 (ℤ ) is invertible iff gcd (휶ퟎ ⋅ 휶ퟏ,푵) = ퟏ

 Determinant of this matrix = (훼 ⋅ 훼 )
 Similarly, 
 taking 푓(푥, 푦, 푧) = 푎 + 푏 풙+ 푐 풚 + 푑 풛 + 푒 풙풚 + 푓 풚풛 + 푔 풙풛+ ℎ 풙풚풛
 we define 푓(훼 풙+ 훽 ,훼 풚 + 훽 ,훼 풛+ 훽 ) such that 품풄풅(휶ퟎ ⋅ 휶ퟏ ⋅ 휶ퟏ ,푵) = ퟏ

퐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 훽 훽 훽 훽 훽 훽 훽 훽 훽 훽 훽 훽
0 훼 0 0 훼 훽 0 훼 훽 훼 훽 훽
0 0 훼 0 훼 훽 훽 훽 0 훼 훽 훽
0 0 0 훼 0 훼 훽 훼 훽 훼 훽 훽
0 0 0 0 훼 훼 0 0 훼 훼 훽
0 0 0 0 0 훼 훼 0 훼 훼 훽
0 0 0 0 0 0 훼 훼 훼 훽 훽
0 0 0 0 0 0 0 훼 훼 훼 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ∈ 푀 (ℤ ) is invertible iff gcd (훼 ⋅ 훼 ⋅ 훼 ,푁) = 1

 

Determinant of this matrix = (훼 ⋅ 훼 ⋅ 훼 )  
Example 6.2: Let 푅 be any given commutative ring with identity. Let 퐺 be the given group generated by {푥, 푦} 
such that 푥 = 푦 = 1, 푥푦 = 푦푥. 
Consider the group algebra 푅퐺 

∙ ퟏ 푥 푦 푥푦 

1 ퟏ 풙 풚 풙풚 

푥 풙 ퟏ 풙풚 풚 

푦 풚 풙풚 ퟏ 풙 
 

푥푦 푥푦 푦 푥 1 
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Now our basic ring is 푹푮, where, we are considering polynomials over 푹푮. 
Let 푓(풙,풚) = 푎 + 푏풙+ 푐풚 + 푑풙풚 be the given polynomial in "  " and " 풚 over 푹푮. 
We can reconstruct 푓(풙,풚) from 푓(풙,풚) ⋅ 푔(풙,풚), where 푔(풙,풚) = 푎 + 푏 풙+ 푐 풚 + 푑 풙풚 iff 

푎 푏 푐 푑
푏 푎 푑 푐
푐 푑 푎 푏
푑 푐 푏 푎

 is invertible over 푅.  

REFERENCES 
[1] T.M. Apostol, (1976), Introduction to analytic number theory. Springer. 
[2] Christof Paar, Jan Pelzl, (2010), Understanding Cryptography, Springer 
[3] I.N. Herstein, (1975), Topics In Algebra (2nd ed.), John Wiley & Sons 
[4] Inder Bir S. Passi, "Group algebras," Indian Journal of Pure and Applied Mathematics, Vol. 43, No. 2, (2012), pp. 89-

106. 
[5] K. Komaya, U. Maurer, T. Okamoto and S. Vanston, "New public-key schemes based on elliptic curves over the ring 

Zn," In J. Feigenbaum (Ed.): Crypto'91, LNCS 576, Springer-Verlag (1992), pp. 252-266. 
[6] N. Koblitz, "Elliptic curve cryptosystems," Mathematics of Computation, Vol. 48 (177), (1987), pp. 203-209. 
[7] R.A. Mollin, C. Small, "On permutation polynomials over finite fields," International Journal of Mathematics and 

Mathematical Sciences, Vol. 10, No. 3, (1987), pp. 535-544. 
[8] R.L. Rivest, A. Shamir, L. Adleman, "A method for obtaining digital signatures and public key cryptosystems," 

Communications of the ACM, Vol. 21, No. 2, (1978), pp. 120-126. 
[9] W. Diffie, M.E. Hellman, "New directions in cryptography," IEEE Transactions on Information Theory, Vol. 22, No. 6, 

(1976), pp. 644-654. 


